0%

HDU 5730 Shell Necklace (16多校第一场fft+分治)

题意

$已知长度为n(1\leq n \leq 10^5)的序列{a _i}$
$给你n个贝壳,你可以把他分成m份,每份个数分别是b _1 ,b _2 , b _3 …b m $
$ 那么你可以获得a
{b_1} a _{b _2} a _{b _3}… a _{b _m} 的贡献值 ,现在问你所有不同分法的贡献值值和是多少 $

分析

设dp[i]为数量总共为i的所有不同分法的总贡献值
$ dp[i+1] = dp[i] \times a_1+dp[i-1] \times a_2 + dp[i-2] \times a_3+…+dp[1] \times a_i+a_{i+1} $
$ dp[n] = \sum_{i=1} ^{n}dp[n-i]*a_i $
具有多项式形式可以考虑fft,但是直接会T,考虑cdq分治,每次分治时跑fft即可

其实具体为什么这样可以我都不是很清楚,附送两发fft学习链接fft流程图DFT原理以及kuangbin博客

代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114

//*************************************************************************
> File Name: hdu5730.cpp
> Author: liangxianfeng
> Mail: liangxianfeng96@qq.com
> Created Time: 20160725日 星期一 112708
************************************************************************/

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<stack>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<string>
#include<cmath>
#include<complex>
using namespace std;
#define ll long long
#define rep(i,n) for(int i =0; i < n; ++i)
#define CLR(x) memset(x,0,sizeof x)
#define MEM(a,b) memset(a,b,sizeof a)
#define pr(x) cout << #x << " = " << x << " ";
#define prln(x) cout << #x << " = " << x << endl;
const int maxn = 4e5+100;
const int INF = 0x3f3f3f3f;
const double PI = acos(-1);
typedef complex<double> cmx;
cmx x[maxn], y[maxn];
int a[maxn], dp[maxn], n;

void change(cmx x[], int len){

for(int i = 1, j = len/2; i < len-1; ++i){
if(i < j) swap(x[i], x[j]);
int k = len/2;
while(j >= k){
j -= k;
k /= 2;
}
while(j < k) j+= k;
}
}
void fft(cmx x[], int len, int on){
change(x, len);
for(int i = 2; i <= len; i <<= 1){
cmx wn(cos(-on*2*PI/i), sin(-on*2*PI/i));
for(int j = 0; j < len; j += i){
cmx w(1,0);
for(int k = j; k < j + i/2; ++k){
cmx u = x[k];
cmx v = x[k+i/2]*w;
x[k] = u + v;
x[k+i/2] = u-v;
w *= wn;
}
}
}
if(on == -1){
for(int i = 0; i < len; ++i){
x[i] /= len;
}
}
}
const int MOD = 313;
void cdq(int l, int r){
if(l == r){
dp[l] += a[l];
dp[l] %= MOD;
return;
}
int mid = (l + r) >> 1;
cdq(l, mid);
int len = 1;
while(len <= (r-l+1)) len <<= 1;
rep(i,len) x[i] = y[i] = cmx(0,0);
for(int i = l; i <= mid; ++i){
x[i-l] = cmx(dp[i], 0);
}
for(int i = 1; i <= r-l; ++i){
y[i-1] = cmx(a[i], 0);
}
fft(x, len, 1);
fft(y, len, 1);
for(int i = 0; i < len; ++i){
x[i] *= y[i];
}
fft(x, len, -1);
for(int i = mid+1; i <= r; ++i){
dp[i] += (int)(x[i-l-1].real() + 0.5);
dp[i] %= MOD;
}
cdq(mid+1, r);
}
int main(){
#ifdef LOCAL
freopen("/home/zeroxf/桌面/in.txt","r",stdin);
//freopen("/home/zeroxf/桌面/out.txt","w",stdout);
#endif
while(cin >> n && n){
MEM(dp, 0);
for(int i = 1; i <= n; ++i){
scanf("%d", &a[i]);
a[i] %= MOD;
}
cdq(1, n);
cout << dp[n] << "\n";
}
return 0;
}